### Secondary Mathematics Teacher Educators’ Interpretations of the Situative Perspective

#### Abstract

In this study, we examined five mathematics teacher educators’ (MTEs’) interpretation of the situative perspective, who self-identify as holding that perspective. Furthermore, we share how they designed and facilitated their secondary mathematics methods course pertaining to the activities they identified as most important for the course. We discuss the participants’ two interpretations of the perspective rooted in the context of teaching and the act of teaching, which seemed to influence their approach to topics of equity but not the types of activities they identified as being most important. Overall, findings from this study indicate there is diversity with respect to how the five MTEs interpret the situative perspective, and that diversity seems to be contextual.

#### Keywords

#### Full Text:

PDF#### References

Appova, A. & Taylor, C. E. (2019). Experienced mathematics teacher educators’ practices for providing prospective teachers with opportunities to develop pedagogical content knowledge in content courses. Journal of Mathematics Teacher Education, 22(2), 179–204. doi:10.1007/s10857-017-9385-z

Association of Mathematics Teacher Educators. (2017). Standards for preparing teachers of mathematics. Raleigh, NC: Authors. Retrieved from https://amte.net/standards

Ball, D. L., Sleep, L., Boerst, T. A., & Bass, H. (2009). Combining the development of practice and the practice of development in teacher education. The Elementary School Journal, 109(5), 458–474. doi:10.1086/596996

Bartell, T. G. (2010). Learning to teach mathematics for social justice: Negotiating social justice and mathematical goals. Journal for Research in Mathematics Education, 41(1), 5–35.

Bergsten, C., & Grevholm, B. (2008). Knowledgeable teacher educators and linking practices. In B. Jaworski & T. Wood (Eds.), The international handbook of mathematics teacher education (Vol. 4, pp. 223–246). Rotterdam, The Netherlands: Sense Publishers.

Berk, D., & Hiebert, J. (2009). Improving the mathematics preparation of elementary teachers, one lesson at a time. Teachers and Teaching: Theory and Practice, 15(3), 337–356. doi:10.1080/13540600903056692

Borko, H., Peressini, D., Romangnano, L., Knuth, E., Willis-Yorker, C., Wooley, C., . . . Masarik, K. (2000). Teacher education does matter: A situative view of learning to teach secondary mathematics. Educational Psychologist, 35(3), 147–217.

Cady, J. A., Hopkins, T., & Hodges, T. E. (2008). Lesson study as professional development for mathematics teacher educators. In F. Arbaugh & P. M. Taylor (Eds.), Inquiry into Mathematics Teacher Education (Vol. 5, pp. 119–129). San Diego, CA: Association for Mathematics Teacher Educators.

Casey, S., Fox, R., & Lischka, A. E. (2018). Interpretations and uses of classroom video in teacher education: Comparisons across three perspectives. In S. Kastberg, A. M. Tyminski, A. Lischka, & W. Sanchez (Eds.), Building support for scholarly practices in mathematics methods (pp. 297–310). Charlotte, NC: Information Age Publishing.

Castro, A. M. (2006). Preparing elementary preservice teachers to use mathematics curriculum materials. The Mathematics Educator, 16(2), 14–24. Retrieved from http://tme.journals.libs.uga.edu/index.php/tme/issue/view/27

Center for Research in Mathematics and Science Education. (2010). Breaking the cycle: An international comparison of U.S. mathematics teacher preparation. East Lansing: Michigan State University.

Chick, H. & Beswick, K. (2018). Teaching teachers to teach Boris: A framework for mathematics teacher educators pedagogical content knowledge. Journal of Mathematics Teacher Education, 21, 475-499.

Chval, K. B., Lannin, J., & Bowzer, A. (2008). The task design framework: Considering multiple perspectives in an effective learning environment for elementary preservice teachers. In F. Arbaugh & P. M. Taylor (Eds.), AMTE Monograph 5: Inquiry into mathematics teacher education (pp. 35–45). San Diego, CA: Association of Mathematics Teacher Educators.

Corbin, J., & Strauss, A. (2008). Basics of qualitative research. Los Angeles, CA: Sage Publications.

Dixon, J. K., Andreasen, J. B., & Stephan, M. (2009). Establishing social and sociomathematical norms in an undergraduate mathematics content course for prospective teachers: The role of the instructor. In D. S. Mewborn & H. S. Lee (Eds.), AMTE Monograph 6: Scholarly practices and inquiry in the preparation of mathematics teachers (pp. 43–66). San Diego, CA: Association of Mathematics Teacher Educators.

Evans, B., Bean, H., Romagnano, L., Gilmore, D., Loats, J., & McKenna P. (2008). Toward a situative perspective on online learning: Metro's mathematics for rural schools program. In F. Arbaugh & P. M. Taylor (Eds.), AMTE Monograph 5: Inquiry into mathematics teacher education. Association of Mathematics Teacher Educators.

Even, R. (2008). Facing the challenge of educating educators to work with practising mathematics teachers. In B. Jaworski & T. Wood (Eds.), The international handbook of mathematics teacher education (Vol. 4, pp. 57–73). Rotterdam, The Netherlands: Sense Publishers.

Floden, R. E., & Philipp, R. A. (2003). Report of working group 7: Teacher preparation. In F. K. Lester & J. Ferrini-Mundy (Eds.), Proceedings of the NCTM Research Catalyst Conference (pp. 171–176). Reston, VA: National Council of Teachers of Mathematics.

Frietas, D. (2008). Troubling teacher identity: Preparing mathematics teachers to teach for diversity. Teaching Education, 19(1), 43–55.

Goodell, J. (2006). Using critical incident reflections: A self-study as a mathematics teacher educator. Journal of Mathematics Teacher Education, 9(3), 221–248. doi:10.1007/s10857-006-9001-0

Greeno, J. G. (2003). Situative research relevant to standards for school mathematics. In J. Kilpartick, W. G. Martin, & D. Schifter (Eds.), A Research Companion to Principles and Standards for School Mathematics (pp. 304–332). Reston, VA: National Council of Teachers of Mathematics.

Greeno, J. G. (2006). Learning in activity. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 79–96). New York, NY: Cambridge University Press.

Greeno, J. G., & Middle School Mathematics Through Applications Project Group. (1998). The situativity of knowing, learning, and research. American Psychologist, 53, 5–26.

Gutiérrez, R. (2013). Why (urban) mathematics teachers need political knowledge. Journal of Urban Mathematics Education, 6(2), 7–19.

Harder, V., & Talbot, L. (1997, February). How are mathematics methods courses taught? Paper presented at the annual meeting of the Association of Mathematics Teacher Educators, Washington, DC.

Heaton, R. M., & Mickelson, W. T. (2002). The learning and teaching of statistical investigation in teaching and teacher education. Journal of Mathematics Teacher Education, 5(1), 35–59. doi:10.1023/A:1013886730487

Hiebert, J., Morris, A. K., Berk, D., & Jansen, A. (2007). Preparing teachers to learn from teaching. Journal of Teacher Education, 58(1), 47–61. doi:

1177/0022487106295726

Hiebert, J., Morris, A. K., & Glass, B. (2003). Learning to learn to teach: An "experiment'' model for teaching and teacher preparation in mathematics. Journal of Mathematics Teacher Education, 6(3), 201–222. doi:10.1023/A:1025162108648

Kastberg, S. E., Tyminski, A. M., Lischka, A. E., & Sanchez, W. B. (2018). Setting the stage. In S. Kastberg, A. M. Tyminski, A. Lischka, & W. Sanchez (Eds.), Building support for scholarly practices in mathematics methods (pp. 3–10). Charlotte, NC: Information Age Publishing.

Kazemi, E. (2018). Teaching a mathematics methods course: Understanding learning from a situative perspective. In S. Kastberg, A. M. Tyminski, A. Lischka, & W. Sanchez (Eds.), Building support for scholarly practices in mathematics methods (pp. 49–65). Charlotte, NC: Information Age Publishing.

Koellner, K., Schneider, C., Roberts, S. A., Jacobs, J., & Borko, H. (2008). Using the problem-solving cycle model of professional development to support novice mathematics instructional leaders. In F. Arbaugh & P. M. Taylor (Eds.), AMTE Monograph 5: Inquiry into mathematics teacher education (pp. 59–70). San Diego, CA: Association for Mathematics Teacher Educators.

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. New York, NY: Cambridge university press.

Lee, H. S., & Mewborn, D. S. (2009). Mathematics teacher educators engaging in scholarly practices and inquiry. In D. S. Mewborn & H. S. Lee (Eds.), AMTE Monograph 6: Scholarly practices and Inquiry in the preparation of mathematics teachers (pp. 1–6). San Diego, CA: Association of Mathematics Teacher Educators.

Liljedahl, P., Chernoff, E., & Zazkis, R. (2007). Interweaving mathematics and pedagogy in task design: A tale of one task. Journal of Mathematics Teacher Education, 10(4), 239–249. doi:10.1007/s10857-007-9047-7

McDuffie, A. R., Drake, C., & Herbel-Eisenmann, B. A. (2008). The elementary mathematics methods course. In B. Jaworski & T. Wood (Eds.), The international handbook of mathematics teacher education (Vol. 4, pp. 247–264). Rotterdam, The Netherlands: Sense Publishers.

National Governors Association Center for Best Practices & Council Chief State School Officers. (2010). Common Core State Standards for Mathematics. Washington, DC: Author.

Otten, S., Yee, S. P., & Taylor, M. W. (2015). Secondary mathematics methods courses: What do we value? In Bartell, T. G., Beida, K. N., Putnam, R. T., Bradfield, K., & Dominguez, H. (Eds.). Proceedings of the 37th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 510–517). East Lansing, MI: Michigan State University.

Seago, N., & Goldsmith, L. (2006, April). Using video cases to learn mathematics for teaching. Paper presented at the Annual meeting of the American Educational Research Association, San Francisco, CA.

Smith, R. C., Taylor, C. E., & Shin, D. (2018). Theoretical perspectives, goals, and activities for secondary mathematics education methods courses. In S. Kastberg, A. M. Tyminski, A. Lischka, & W. Sanchez (Eds.), Building support for scholarly practices in mathematics methods (pp. 311–324). Charlotte, NC: Information Age Publishing.

Stake, R. E. (2005). Qualitative case studies. In N. K. Denzin & Y. S. Lincoln (Eds.), The sage handbook of qualitative research (3rd ed., pp. 443–466). London: Sage Publications.

Steele, M. D. (2008). Shifting roles, shifting perspectives: Experiencing and investigating pedagogy in teacher education. In F. Arbaugh & P. M. Taylor (Eds.), AMTE Monograph 5: Inquiry into mathematics teacher education (pp. 109–118). San Diego, CA: Association for Mathematics Teacher Educators.

Taylor, P. M., & Ronau, R. (2006). Syllabus study: A structured look at mathematics methods courses. AMTE Connections, 16(1), 12–15.

Van Zoest, L. R., & Stockero, S. L. (2008). Concentric task sequences: A model for advancing instruction based on student thinking. In F. Arbaugh & P. M. Taylor (Eds.), AMTE Monograph 5: Inquiry into mathematics teacher education (pp. 47–58). San Diego, CA: Association of Mathematics Teacher Educators.

Wager, A. A. (2014). Noticing children’s participation: Insights into teacher positionality toward equitable mathematics pedagogy. Journal of Research in Mathematics Education, 45(3), 312–350.

Watanabe, T., & Yarnevich, M. (1999, January). What really should be taught in the elementary methods course? Paper presented at the annual meeting of the Association of Mathematics Teacher Educators, Chicago, IL.

Zaslavsky, O. (2007). Mathematics-related tasks, teacher education, and teacher educators. Journal of Mathematics Teacher Education, 10(4), 433–440. doi:10.1007/s10857-007-9060-x

### Refbacks

- There are currently no refbacks.