Mathematics at Hand

Anderson Norton, Catherine Ulrich, Martha Ann Bell, Anthony Cate


The emerging field of mathematics educational neuroscience provides researchers with new approaches to understanding mathematical development, as well mathematics itself. This paper focuses on the role of the hand in constructing mathematics through activity. In reviewing results from neuroscience studies, we distinguish three kinds of relevant activity: sensorimotor activity, internalized actions, and interiorized operations. These distinctions and related neuroscience findings contribute to a new sense of mathematical embodiment. They also provide implications for mathematics instruction.


educational neuroscience; embodied cognition; mathematical development; radical constructivism

Full Text:



Alibali, M. W., & Nathan, M. J. (2012). Embodiment in mathematics teaching and learning: Evidence from learners’ and teachers’ gestures. Journal of the Learning Sciences, 21(2), 247-286.

Andres, M., Xavier, S., & Olivier, E. (2007). Contribution of hand motor circuits to counting. Journal of Cognitive Neuroscience, 19(4), 563-576.

Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews Neuroscience, 9(4), 278–291. doi:10.1038/nrn2334

Ansari, D., & Dhital, B. (2006). Age-related changes in the activation of the intraparietal sulcus during nonsymbolic magnitude processing: An event-related functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 18(11), 1820–1828. doi: 10.1162/jocn.2006.18.11.1820

Arnstein, D., Cui, F., Keysers, C., Mauits, N.M. & Gazzola, V. (2011). μ – Suppression during action observation and execution correlates with BOLD in dorsal premotor, interior parietal, and SI cortices. The Journal of Neuroscience, 31, 14243–14249. doi: 10.1523/JNEUROSCI.0963-11.2011

Baroody, A. J. (2004). The developmental bases for early childhood number and operations standards. Engaging young children in mathematics: Standards for early childhood mathematics education, 173–219.

Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., ... & Freund, H. J. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. European Journal of Neuroscience, 13(2), 400–404.

Buccino, G., Vogt, S., Ritzl, A., Fink, G. R., Zilles, K., Freund, H. J., & Rizzolatti, G. (2004). Neural circuits underlying imitation learning of hand actions: an event-related fMRI study. Neuron, 42(2), 323–334. doi:10.1016/S0896-6273(04)00181-3

Campbell, S. R. (2006). Defining mathematics educational neuroscience. In Proceedings of the 28th Annual Meeting of the North American Chapter of the International Group for Psychology in Mathematics Education (PMENA) (Vol. 2, pp. 442–449).

Carbonneau, K. J., Marley, S. C., & Selig, J. P. (2013). A meta-analysis of the efficacy of teaching mathematics with concrete manipulatives. Journal of Educational Psychology, 105(2), 380. doi: 10.1037/a0031084

Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 352–378.

Crollen, V. & Noël, M-P. 2015). The role of fingers in the development of counting and arithmetic skills. Acta Psychologica, 156, 37-44.

Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 95–123). Netherlands: Kluwer. doi: 10.1007/0-306-47203-1_7

Emerson, R. W., & Cantlon, J. F. (2012). Early math achievement and functional connectivity in the fronto-parietal network. Developmental Cognitive Neuroscience, 2 Suppl 1, S139–151. doi: 10.1016/j.dcn.2011.11.003

Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: a magnetic stimulation study. Journal of Neurophysiology, 73(6), 2608-2611.

Fayol, M., Barrouillet, P., & Marinthe, C. (1998). Predicting arithmetical achievement from neuropsychological performance: A longitudinal study. Cognition, 68, B63-B70. doi: 10.1016/S0010-0277(98)00046-8

Gallese, V. (2007). Before and below ‘theory of mind’: embodied simulation and the neural correlates of social cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1480), 659-669.

Gallese, V., & Lakoff, G. (2005). The brain's concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3-4), 455-479. doi: 10.1080/02643290442000310

Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44(1), 43-74. doi: 10.1016/0010-0277(92)90050-R

Glasersfeld, E. von (1981). An attentional model for the conceptual construction of units and number. Journal for Research in Mathematics Education, 12(2), 83–94. doi: 10.2307/748704

Hackenberg, A. J. (2007). Units coordination and the construction of improper fractions: A revision of the splitting hypothesis. Journal of Mathematical Behavior, 26(1), 27-47. doi: 10.1016/j.jmathb.2007.03.002

Hackenberg, A. J., & Tillema, E. S. (2009). Students’ whole number multiplicative concepts: A critical constructive resource for fraction composition schemes. The Journal of Mathematical Behavior, 28(1), 1 – 18.

Hostetter, A. B., & Alibali, M. W. (2008). Visible embodiment: Gestures as simulated action. Psychonomic Bulletin & Review, 15(3), 495-514. doi: 10.3758/PBR.15.3.495

Ischebeck, A., Schocke, M., & Delazer, M. (2009). The processing and representation of fractions within the brain: An fMRI investigation. Neuroimage, 47, 403-412. doi: 10.1016/j.neuroimage.2009.03.041

Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage, 14(1), S103-S109.

Koziol, L. F., Budding, D. E., & Chidekel, D. (2012). From movement to thought: executive function, embodied cognition, and the cerebellum. The Cerebellum, 11(2), 505-525. doi: 10.1007/s12311-011-0321-y

Logie, R. H. (1995). Visuo-spatial working memory. Hove, UK: Lawrence Erlbaum Associates.

Meshberger, F. L. (1990). An interpretation of Michelangelo's Creation of Adam based on neuroanatomy. JaMa, 264(14), 1837-1841. doi: 10.1001/jama.1990.03450140059034

Mruczek, R. E., von Loga, I. S., & Kastner, S. (2013). The representation of tool and non-tool object information in the human intraparietal sulcus. Journal of Neurophysiology, 109(12), 2883-2896. doi: 10.1152/jn.00658.2012

Nemirovsky, R., & Ferrara, F. (2009). Mathematical imagination and embodied cognition. Educational Studies in Mathematics, 70, 159-174. doi: 10.1007/s10649-008-9150-4

National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: NCTM.

Noël, M. E. (2005). Finger gnosia: A predictor of numerical abilities in children? Child Neuropsychology, 11, 413-430. doi: 10.1080/09297040590951550

Novack, M. A., Congdon, E. L., Hemani-Lopez, N., & Goldin-Meadow, S. (2014). From action to abstraction using the hands to learn math. Psychological Science, 25(4), 903-910. doi: 10.1177/0956797613518351

Núñez, R. (2006). Do real numbers really move? Language, thought, and gesture: The embodied cognitive foundations of mathematics. In 18 unconventional essays on the nature of mathematics (pp. 160-181). Springer New York. doi: 10.1007/0-387-29831-2_9

Núñez, R. E., Edwards, L. D., & Matos, J. F. (1999). Embodied cognition as grounding for situatedness and context in mathematics education. Educational Studies in Mathematics, 39, 45-65. doi: 10.1023/A:1003759711966

Olive, J. & Vomvoridi, E. (2006). Making sense of instruction on fractions when a student lacks necessary fractional schemes: The case of Tim. Journal of Mathematical Behavior, 25(1), 18-45. doi: 10.1016/j.jmathb.2005.11.003

Penner-Wilger, M., & Anderson, M. L. (2013). The relation between finger gnosis and mathematical ability: why redeployment of neural circuits best explains the finding. Frontiers in psychology, 4. doi: 10.3389/fpsyg.2013.00877

Piaget, J. (1942). The child’s conception of number. London: Routledge & Kegan Paul.

Piaget, J. (1970). Structuralism (C. Maschler, Trans.). New York: Basic Books.

Piaget, J. (1972). The principles of genetic epistemology (W. Mays trans.) New York: Basic Books (Original work published, 1970).

Piaget, J., Inhelder, B., & Szeminska, A. (1960). The child’s conception of geometry. London: Routledge and Kegan Paul.

Raje, S., Krach, M., & Kaplan, G. (2013) Connecting spatial reasoning ideas in mathematics and chemistry. Mathematics Teacher, 107, 220-224.

Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). Developmental changes in mental arithmetic: Evidence for increased functional specialization in the left inferior parietal cortex. Cerebral Cortex, 15(11), 1779-1790. doi: 10.1093/cercor/bhi055

Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169-192. doi: 10.1146/annurev.neuro.27.070203.144230

Rusconi, E., Walsh, V., & Butterworth, B. (2005). Dexterity with numbers: rTMS over left angular gyrus disrupts finger gnosis and number processing.Neuropsychologia, 43(11), 1609-1624. doi: 10.1016/j.neuropsychologia.2005.01.009

Sato, M., Cattaneo, L., Rizzolatti, G., & Gallese, V. (2007). Numbers within our hands: modulation of corticospinal excitability of hand muscles during numerical judgment. Journal of Cognitive Neuroscience, 19(4), 684-693. doi: 10.1162/jocn.2007.19.4.684

Steffe, L. P. (1992). Schemes of action and operation involving composite units. Learning and Individual Differences, 4(3), 259-309. doi: 10.1016/1041-6080(92)90005-Y

Steffe, L. P. (2002). A new hypothesis concerning children’s fractional knowledge. Journal of Mathematical Behavior, 20(3), 267–307.

Steffe, L. P., Glasersfeld, E von, Richards, J. & Cobb, P. (1983). Children’s counting types: Philosophy, theory, and application. New York: Praeger Scientific.

Steffe, L. P., & Olive, J. (2010). Children's fractional knowledge. NY: Springer.

Valyear, K. F., Cavina-Pratesi, C., Stiglick, A. J., & Culham, J. C. (2007). Does tool-related fMRI activity within the intraparietal sulcus reflect the plan to grasp?. Neuroimage, 36, T94-T108. doi: 10.1016/j.neuroimage.2007.03.031

Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625-636. doi: 10.3758/BF03196322

Wise, S. P. (1985). The primate premotor cortex: past, present, and preparatory. Annual Review of Neuroscience, 8(1), 1-19. doi: 10.1146/


  • There are currently no refbacks.